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ABSTRACT. The four series 

00 00 

Lsin(2k + 1)a/(2k + 1)2, Lcos(2k + ?)o,/(2k +1)3, 
0 0 

00 00 

L A/2k+ I(2k 1)2, and E A2k+ /(2k + 1)3 
0 0 

are very slowly convergent for 0 < a < 7t and as A -1 . Direct summation 
involves thousands of terms to get the accuracy desired. Plana's summation for- 
mula along with Romberg's method of integration significantly and consistently 
improves the convergence and accuracy for the above series. 

1. INTRODUCTION 

The analysis of unilateral plate contact problems [3-5] encountered several 
very slowly convergent series which were not easily evaluated other than by 
direct summation. This is unsatisfactory from the viewpoint of computer time, 
aesthetics, and accuracy. The particular series encountered in [3-5] were 

(la~~~b) sin(rna) 
00 

cos(rna) (~~r 
ab) 3 m m=,3,. (O < a < 7r) 

and 
00 Am ?? A m 

(2a,b) A:m2 AE 3 (O < A < 1). 
MI,3..M m=1,3,... M 

The mathematical formulation of the unilateral contact problems stated in 
[3-5] used finite Fourier transforms to reduce four coupled series equations to 
two coupled singular integral equations. The known functions in these integral 
equations were expressed in terms of many infinite series. The physical problem 
involves a transition point past which a flexible plate is no longer in contact with 
a rigid knife edge support. In the vicinity of this transition point, therefore, as 
an artifact of a linearized plate theory, certain physical quantities exhibit a 
singular inverse square root behavior. 
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The issue in the solution of the above integral equations was to sum the series, 
several of which were very slowly convergent (as noted above), very precisely 
in order to accurately identify and portray the singular behavior in question. If 
the setup of the known functions in the integral equations had to be done only 
once, crude summation would still not be too much of a drawback. However, 
unilateral contact problems are nonlinear and require iterative solutions. The 
CPU time then quickly becomes excessive if direct summation is used. The 
above series are summed in this paper using Plana's summation formula, which 
is stated below. Comparisons with several well-known acceleration schemes are 
presented at the end of the paper. 

2. PLANA'S SUMMATION FORMULA [12, 16] 

Let f be a function for which the sum Em f (k) is of interest. The condi- 
tions imposed on f are that 

I. f(z) be analytic for Re z> m; 
II. lim e-27rIYjf(x + iy) = 0 holds uniformly for m < x < n, no 

matter how large n is; 
III. limx f010 e 27jyjIlf(x + iy)l dy = 0. 

Theorem. Let f satisfy the above conditions, and let either the series E' f(k) 
or the integral fJb f(x) dx be convergent. Then 

(3) E (k) = f (m) + f(x) dx - 2 2(,,,,1Ydy, 

where 

(4) q(m, y) = [f(m + iy) - f(m - iy)]/2i. 

(If f is real when y = 0, then q(x, y) is the imaginary part of f(z).) 

The development of this formula dates back to Plana in 1820 with subsequent 
works featuring such notable mathematicians as Abel, Cauchy, and Kronecker. 
The theory and history behind the formula are discussed in detail in Lindelof 
[16]. 

The particular form of Plana's summation formula (P.S.F.) used in this paper 
is given by (3) with m equal to zero. The series in (la,b) and (2a,b) converge 
very slowly if straight summation is used, especially as a tends to zero and 
as A tends to 1 , respectively. In this paper the series are first converted 
into integral form using Plana's summation formula and then evaluated using 
the general version of Romberg's algorithm (see [13, p. 292]). The validity of 
this approach is demonstrated using the known series (equations 14.2.21 and 



PLANA'S SUMMATION FORMULA 695 

17.2.16, respectively, in Hansen [10]) 

(la') E sin(2k + )a ra( - a)/8 for -r < a<r 

00cos(2k +1)a 
(lb') E (2k + 1)2 ( - 21a1)/8 for -r < a<r. 

Both sets of series in (la,b) and (la',b') are incorporated in Plana's summa- 
tion formula by considering, for n = 2 and n = 3, 

ei(2z+ 1)a 

f(Zn )=(2z + 1) 

which can be shown to satisfy conditions I-III of the theorem. Applying the 
theorem and equating real and imaginary parts in (3) for m = 0 gives 

(a sin(2k+1)a= 1 sina+ sin(2x + 1)a dx 

(6a) k0 
2 1)n 2 ~ (2x + 1)n 

- 02 qs - n '? Y) d - 2 - qc~? dy, 

00cos(2k + 1)a _1 + f cos(2x + 1)a d 

(6b) kE (2k +1)n -2Cosa 
+ 

(2x+ 1) 
d 

joo(2y)dy, 

where 

(7a) qs n = (Cn sin a cosh 2ay-Sn cos a sinh 2ay)/( 1 + 4y2)n ) 
(7b) qc n = (Cn cos a cosh 2ay + Sn sin a sinh 2ay)/(1 + 4y2 n) 

and in which 

(8a) C2 = -4y, S2 = 4y2 _ 1 

(8b) C3=8y3 -6y, S3=12y2 1. 

The first integral in each of (6a) and (6b) may be written as 
J? sin(2x + 1)a dx 

(9a) 1 [sina - aci(a)]/2 for n = 2, 
= ~~~~~~~~2 
t [sin a + a cos a + a si(a)]/4 for n = 3, 

7 cos(2x+ 1)ad 

(9b) | [cos a + asi(a)]/2 for n = 2, 
l [cos a - a sin a + a2= 2 
t.[cos a- asin a +aci(a)]/4 for n= 3, 
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respectively, using integration by parts and the following definitions from ?8.23 
in [8]: 

a (1 Oa) si(a) = -7f/2 + | st dt, 
a Cost -i 

(lOb) ci(a) = y + loga + dt. 

In (lOb), y is Euler's constant (y = 0.577215664901532 ... 
For computational convenience, the second integral in each of (6a) and (6b) 

may be expressed as follows: 

(11) i 27ry dy=j e2Oy) dy+ ( (2/ _ 1/x) 2dx. 

The slowly convergent series in (2a,b) were not directly encountered in the 
analysis of unilateral contact problems [3-5] but did in fact cause the slow 
convergence of the following hyperbolic series: 

(12ab) E cosh(mz) E sinh(mz) 
m=1,3,... m=1,3,... mcosh(mb) 

By letting B = e-2b, A = e-(b-lzl) G = e-(b+lzl), and H = e-(3b lzl), (12a,b) 
become 

00 cosh(mz) ?? Am ?? 1 -Gm-Hml (1 3a) E m2csm = E Z 2 + E m2 [1+BmJ' M cosh(mb) m-, 3.. m mrn- 3,. M 

sinh(mz) 

m=1,3,.. m 3cosh(mb) 
(1 3b) 0 A 0 1 G Hm 

=sgn (Z){zZ3E 3[1 +Bmn} 
(13b) i~~~~~M=- 1,3, ... m m=l 1,3, ..... 

m[ +B]} 

The problem is that the series in (1 3a,b) converge slowly when z approaches b. 
It is difficult to improve the convergence of the related series 12U1 1, Am/m3 

and m?= 3, Am /m2. For instance, when the variable A in the series 

M=3 ... Am/m2 tends to 1, by direct summation it would take as many as 
500,000 terms to give results accurate to six decimal places. 

By using Plana's summation formula, the slowly convergent series in (1 3a,b) 
may be expressed as 

(14 A2k+ If A , A 2x+ I /f , ( 0 x /y (14) (2k +l)n2A+I (2x +l)ndX I e 1~lY 
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where 

(15) q,(0, y) = A[Cncos(2ylogA) -Snsin(2ylogA)]/(1 +4y2)n 

in which Cn and Sn (n = 2, 3) are defined in (8a,b). 
The first integral in (14) can be transformed to the following finite integrals 

(the second integral can be modified as in (1 1)): 

(16) j (2A 2)I dx Vn-22A1!v dv. 

3. APPLICATION OF PLANA'S SUMMATION FORMULA 

The finite integrals remaining in (10), (11), and (16) can now be readily 
evaluated by repeated Simpson's rule and the more general Romberg's method, 
since in both methods the error of integration can be predetermined [2, 13]. 
Romberg's method is one of the most widely used methods, since, among other 
advantages, it gives a simple strategy for the automatic determination of a suit- 
able step size. Simpson integration is a special case of Romberg integration. 

Tables 1-3 present the accuracy and convergence for 
00 

sin(2k + 1)a 
E (2k + 1)n (n = 2, 3) 

by direct summation and P.S.F. (EN denotes the difference between an exact 
result and either direct summation or P.S.F.; N = (b - a)/2h, where N is the 
number of divisions in Simpson's or Romberg's rule). When a equals zero, 
direct summation converges extremely slowly (for n = 2), yet P.S.F. performs 
extremely well, especially if Romberg's method is used. Tables 4-6 present the 
accuracy and convergence for 

00 
cos(2k + 1)a 

E kO(2k + 1)n (n = 2, 3) 

by direct summation and P.S.F. For a = 0 and a = 7r/3, the sum in 
(lb) is known to be given by A(3) = 1.05179 97902 64645 and l7 C(3) = 
0.46746 65734 50953, respectively (see [1, 23.2.18, 23.2.20, and Table 23.3] as 
well as [15, p. 146]). 

TABLE 1 

Direct summation for E' sin(2k + 1)a/(2k + 1)n 

a N e :n=2 a N EN: n=3 [eq.(la)] 

7r/2 100 1.24 x 10 0- zr/4 10000 6.76 x 10- 

1000 1.24 x i0-7 n/3 10000 1.15 x 10-3 
10000 1.25 x i0o- 1/2 10000 4.01 x 1 0- 
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TABLE 2 
Plana's summation formula and E' sin(2k + 1)a/(2k + 1)n 

a N eN (Simpson's Rule) a N 9N (Romberg's Method) 

7r/2 n = 2 n = 3 [Eq. (la')] r/2 n =2 n = 3 [eq. (la')] 
4 1.22 x 10-4 5.64 x lo -, 4 6.47 x 10-5 2.35 x 10- 

16 3.96 x 10-7 1.62 x O-6 
6 

16 1.04 x IO-8 9.25 x 1O-8 

64 1.53 x 10-' 6.25 x 10- j 64 3.77 x 10-15 6.21 x I0-14 

TABLE 3 
a = 7r/4 and a = 7i/6 for Z' sin(2k + 1)a/(2k + 1)2 

a ir/4 7r/6 
I 00000 .75288 07524 87526 .61064 37294 63285 

Simpson's Rule (N = 512) .75288 07525 05710 .61064 37294 51354 
Romberg's Method (N = 64) .75288 07525 05896 .61064 37294 51477 

TABLE 4 
Direct summation for ,: cos(2k + 1)a/(2k + 1)n 

a N N:l=3 N EN * n = 3 a N EN: n = 2 [eq. (lb')]I 
0 100 6.24 x 10-6 I r/3 100 6.27 x lo-, n r/4 10000 2.44 x I0-'3 

1000 6.25 x 10-8 1000 6.25 x 10-11 1r/3 10000 1.25 x 10-9 
10000 6.26 x 10-' 10000 4.99 x 10-1' i/2 10000 1.37 x 10-' 

By making comparisons between Table 2 and Table 5, the integrals in equa- 
tion (6a) are seen to converge much faster than those in equation (6b). Since 
crude summation for E' sin(2k + 1)a/(2k + 1)2 converges very slowly, the 
advantages of Plana's summation formula are obvious. 

Tables 7-10 present the accuracy and convergence obtained using direct sum- 
mation and P.S.F. for 

oo 2k+1I 

E I2kl)n (n= 2,3). 

For A equal to unity in (14), the sums are known [1] and are given by 
1.23370 05501 36170 and 1.05179 97902 64645 for n = 2 and 3, respectively. 
These specific check cases are used in Tables 7-10. Observe from Tables 7, 8 
and 9, 10 that direct summation actually converges faster in (14) when A is not 
close to unity; when A is close to or equal to unity, P.S.F. (using Romberg's 
method of integration) is vastly preferable. 
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TABLE 5 
Plana's summation formula and E' cos(2k + 1)a/(2k + 1)n 

a N eN (Simpson's Rule) a N 9N (Simpson's Rule) 
0 n = 2 [eq. (lb')] n = 3 r/3 n = 2 [eq. (lb')] n = 3 

4 1.04 x 10-3 3.59 x 10-4 4 1.00 X 0-3 3.59 x 10-4 
16 2.59 x 10-? 1.03 x 10-6 16 2.45 x 10-? 1.03 x 10-? 
64 9.94 x 10-9 3.98 x 10-9 64 9.39 x 10-9 3.99 x 10-9 

a N eN (Romberg's Method) a N cN (Romberg's Method) 
0 n =2eq. (lb')] n =3 7r/3 n =2 [eq. (lb')] n =3 

4 2.15 x 1O-2 1.50x 10-4 4 1.92x 10-4 1.50x 10-4 

16 2.81 x 10- 5.89 x 10-8 16 2.78 x 10-7 5.89 x 10-8 
64 1.27 x 10-13 3.66 x 10-14 64 1.24 x 10-13 3.90x 10-14 

TABLE 6 
a = 7 /4 and a = 7r/6 for E' cos(2k + 1)a/(2k + 1)3 

ar/4 7r/6 

ZI 000 .67767 73183 78142 .85739 98075 96532 
Simpson's Rule (N= 512) .67767 73183 75865 .85739 98075 94300 
Simpson's Rule (N = 2048) .67767 73183 78244 .85739 98075 96723 

Romberg's Method (N = 128) .67767 73183 78214 .85739 98075 96690 

TABLE 7 

Direct summation for Z0, A2k+l!(2k + 1)2 

A N EN AN zN 
1 100 2.49 x 10-3 r/4 10 .85738 78296 97219 

1000 2.49 x 10-4 30 .85741 75390 62508 
10000 2.50 x 10-5 50 .85741 75393 17405 

____ __ 70 .85741 75393 17411 

TABLE 8 
Plana's summation formula and E' A 2k+ /(2k + 1)2 

A N cN (Romberg's Method) A N Romberg's Method 
1 4 1.49 x 10 -4 7r/4 64 .85741 75532 06681 

16 5.88 x 108 128 .85741 75389 31794 
64 3.66 x 10-14 256 .85741 75393 22545 

512 .85741 75393 17399 

TABLE 9 
Direct summation for >Z' A2k+1!(2k + 1)3 

IA N CN A N EN N I~~~e 
1 100 6.24 x 10-6 r/4 10 .80651 09541 19534 

1000 6.25 x 108 30 .80651 22514 82909 
10000 6.26 x I0- 1j0 50 .80651 22514 86918 
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TABLE 1 0 
Plana's summation formula and E' A 2k+I /(2k + 1)3 

A N eN (Romberg's Method) A N Romberg's Method 

1 4 2.15 x 10 -4 7r/4 64 .80651 22538 34243 

16 2.81 x 10- 128 .80651 22514 54534 

64 1.27 x I0-3 256 .80651 22514 87145 
512 .80651 22514 86922 

TABLE 1 1 

Grossman's eq. (17) vs P.S.F. for Zo cos(2n + 1)t/(2n + 1)3 

t/(7r/18) eq. (17) P.S.F. (Romberg's Method), N= 128 
0 1.0517 99790 26464 1.0517 99790 26465 
1 1.0218 07415 95651 1.0218 07420 53666 
2 .95298 32900 92100 .95298 35832 28726 
3 .85739 64682 24771 .85739 98075 96690 
4 .74160 16553 79955 .74162 04236 49969 
5 .61030 31247 96820 .61037 47642 92090 
6 .46725 24181 28560 .46746 65734 50957 
7 .31562 49850 66774 .31616 60109 56054 
8 .15821 34521 77232 .15942 24291 95318 

9 -2.4613 x 10-3 -1.3592 x 106 

4. OTHER CONVERGENCE ACCELERATION SCHEMES 

A rough draft of the present paper attracted the attention of Glasser [7] and 
Grossman [9]. Grossman undertook to determine the asymptotic behavior of 
EnOO 2 cos(tn)ln' and EZi 2, sin(tn)/nr as t -* 0+ (r > 0), using the 
Mellin transform and residue theory. The expression found for the latter series 
with r = 3 coincided with the known exact expression. The expression found 
by Grossman [9] for (lb), on the other hand, was for t -* 0+: 

(17) 3cos(2n 
+ 1)t 7(3) - k(t) + 0(2t)/8, 

n-0 (2n + i)~ 8 

where 

(18) q$(t)= [log(} +] ?E(2 
(18) +(t)= ~2 [1gt)2 + (2j -2) (2j)!t 

in which Bn denotes Bernoulli numbers [1]. The expression in (17) is exact for 
t = 0, accurate to eight decimal places for t =7r/ 18, but accurate to only three 
decimal places for t = 47r/9 (see Table 11). 

Glasser suggested that (1 a) might be summed appropriately using results pub- 
lished in [6], i.e., 

?? sin(2k + 1)a I .f x E =- sina dx 
(19) 0 (2k+ 1)2 2 coshx-cosa 

- - sin2a c dx. 
8 Jo cosh x - cos 2a 
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TABLE 12 
Glasser's eq. (19) vs P.S.F. for Z' sin(2k+ 1)xa/(2k + 1)2 

a/(7r/6) eq. (17), N = 32 P.S.F. (Romberg's Method), N =32 
1 .61062 66370 .61064 37294 
2 .75288 12103 .75288 07525 
3 .91596 55910 .91596 55941 

TABLE 13 
Levin 's method and Aitken 's algorithm for S' 1 /(2k + 1 )n 

e, (Levin's method) em (Aitken's algorithm) 
/ n= 2 n=3 m n=2 n=3 
1 3.73 x 10-4 2.49 x 10-5 1 6.70 x 10-2 3.76 x 10-3 

2 1.38 x 10-6 2.49 x 10-7 3 1.11 x I0-3 1.51 x 10-3 

3 2.56 x 10-? 3.62 x i0-9 5 1.00 x i0-5 1.05 x 10-5 

4 8.36 x 10-1 4.67 x 10-1 7 1.94 x 10-8 2.48 x 10-7 
5 2.04 x 10-10 2.69 x 101 9 1.36 x 10-9 2.64 x 10-9 
6 1.79 x 10-2 3.19 x 10-4 11 1.36 x 10-" 3.00 x 10-11 
7 1.45 x 10-2 2.13 x 10-4 13 8.11 x 10-' 2.47 x 10-9 

15 2.95 x lO- 

TABLE 14 

Aitken's algorithm vs P.S.F. for Z0 A2k+ I /(2k + 1)n 

Aitken's algorithm P.S.F. (Romberg's Method) 
A = 7r/4, n = 2 .85741 75393 17400 (m = 41) .85741 75393 17399 (N = 512) 
A = 7r/4, n = 3 .80651 22514 86922 (m = 38) .80651 22514 86922 (N= 512) 

Though the range is infinite, the integrals converge exponentially. By using the 
Gauss-Laguerre rule, the results are presented in Table 12. The overbar denotes 
the accurate decimal place. Obviously, the accuracy and convergence are not 
good, especially for small a. 

The work by Glasser [7] and Grossman [9] should be useful to those not 
requiring highly precise evaluations. 

When A = 1 , the series (2a,b) are logarithmic. It was suggested by a re- 
viewer that Levin's methods might be useful in this case. There are several 
nonlinear transformations for improving convergence of sequences such as the 
t-transformation, e-transformation, and u-transformation [14]. Here, the u- 
transformation is chosen because the u-transformation is very efficient for the 
series such as E=' I I/m2 [14]. Table 13 presents the accuracy and conver- 
gence found using the u-transformation. In Table 13, for 1 less than or equal 
to 5 (1 denotes the number of terms summed), the results are good, but not 
as good as those of P.S.F. (see Tables 7, 8 and 9, 10). For example, for 
1 = 5, e6 = 2.04 x 10 10 (for EZ%0 1/(2k + 1)2) and el = 2.69 x 1011 
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0013 14 (for Ek=o 1/(2k + 1)) by Levin's method, but by P.S.F., EN = 3.66 x 101 

and N = 1.27 x 1 3, respectively. Disconcertingly, Levin's method is also 
not stable; notice in Table 13 that the results are getting worse for 1 > 5. 

When A is different from 1, Aitken's algorithm was suggested. Tables 13 
and 14 present the results found using Aitken's algorithm; m is the number of 
interpolated points in Aitken's algorithm. When A is equal to 1, the accuracy 
of Aitken's algorithm is not as good as that of P.S.F., but more stable than 
Levin's method. For A different from 1, the results are in good agreement with 
those of P.S.F. The convergence is slower than in the case of A = 1 . 

5. CONCLUSIONS 

Plana's summation formula is presented here for the evaluation of the Fourier 
series 

E sin(2k + 1)a cos(2k + 1)a 
0 (2k + 1)2 

' (2k + 1)3 

and the series 
?? A2k+1 ?? A2k+ 1 

0(2k 1)2 (2k?1)3 

which are very slowly convergent for 0 < a < ir and as A I V, respectively. 
As shown by the tables, P.S.F. is generally superior for 

00 

5cos(2k+ 1)a/(2k+ 1)3 
0 

2 
and works very well for E0? sin(2k + 1 )a/(2k + 1) . When A is close to unity, 
P.S.F. also gives consistent and satisfactory results for 

o A 2k+1 oI 2k+1 

0 (2k + 1) 0 (2k +i)3 
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